博客
关于我
P2568 GCD(欧拉函数)
阅读量:713 次
发布时间:2019-03-21

本文共 528 字,大约阅读时间需要 1 分钟。

为了解决问题,我们需要计算从1到n的所有数对(i, j)中,i和j的最大公约数为p的数目。通过分析和应用数论中的欧拉函数,我们可以得出以下结论:

分析与解答

  • 问题转化:题目要求计算满足gcd(i, j) = p的数对(i, j)的数量。我们可以将问题转化为寻找互质的数对(a, b),其中i = p * a,j = p * b。

  • 限制条件:为了满足gcd(i, j) = p,a和b必须互质,并且1 ≤ a, b ≤ n/p。令m = floor(n/p)。

  • 欧拉函数的应用:欧拉函数φ(m)计算小于等于m的自然数中与m互质的数的个数。由于a和b必须互质,每对(a, b)满足条件的次数为φ(1) + φ(2) + ... + φ(m)。

  • 公式推导:因此,满足gcd(i, j) = p的数对个数为φ(1) + φ(2) + ... + φ(m),即φ(1) + φ(2) + ... + φ(m)。

  • 答案

    ∑从i = 1到floor(n/p),再计算每一项φ(i),即最终的总数为:

    ∑ i = 1 到 floor(n/p) φ(i)

    简化为:

    ∑_{i=1}^{n/p} φ(i),其中floor(n/p) = m。因此,答案为欧拉函数从1到m的求和。

    转载地址:http://iijrz.baihongyu.com/

    你可能感兴趣的文章
    MySQL 的mysql_secure_installation安全脚本执行过程介绍
    查看>>
    MySQL 的Rename Table语句
    查看>>
    MySQL 的全局锁、表锁和行锁
    查看>>
    mysql 的存储引擎介绍
    查看>>
    MySQL 的存储引擎有哪些?为什么常用InnoDB?
    查看>>
    Mysql 知识回顾总结-索引
    查看>>
    Mysql 笔记
    查看>>
    MySQL 精选 60 道面试题(含答案)
    查看>>
    mysql 索引
    查看>>
    MySQL 索引失效的 15 种场景!
    查看>>
    MySQL 索引深入解析及优化策略
    查看>>
    MySQL 索引的面试题总结
    查看>>
    mysql 索引类型以及创建
    查看>>
    MySQL 索引连环问题,你能答对几个?
    查看>>
    Mysql 索引问题集锦
    查看>>
    Mysql 纵表转换为横表
    查看>>
    mysql 编译安装 window篇
    查看>>
    mysql 网络目录_联机目录数据库
    查看>>
    MySQL 聚簇索引&&二级索引&&辅助索引
    查看>>
    Mysql 脏页 脏读 脏数据
    查看>>