博客
关于我
P2568 GCD(欧拉函数)
阅读量:713 次
发布时间:2019-03-21

本文共 528 字,大约阅读时间需要 1 分钟。

为了解决问题,我们需要计算从1到n的所有数对(i, j)中,i和j的最大公约数为p的数目。通过分析和应用数论中的欧拉函数,我们可以得出以下结论:

分析与解答

  • 问题转化:题目要求计算满足gcd(i, j) = p的数对(i, j)的数量。我们可以将问题转化为寻找互质的数对(a, b),其中i = p * a,j = p * b。

  • 限制条件:为了满足gcd(i, j) = p,a和b必须互质,并且1 ≤ a, b ≤ n/p。令m = floor(n/p)。

  • 欧拉函数的应用:欧拉函数φ(m)计算小于等于m的自然数中与m互质的数的个数。由于a和b必须互质,每对(a, b)满足条件的次数为φ(1) + φ(2) + ... + φ(m)。

  • 公式推导:因此,满足gcd(i, j) = p的数对个数为φ(1) + φ(2) + ... + φ(m),即φ(1) + φ(2) + ... + φ(m)。

  • 答案

    ∑从i = 1到floor(n/p),再计算每一项φ(i),即最终的总数为:

    ∑ i = 1 到 floor(n/p) φ(i)

    简化为:

    ∑_{i=1}^{n/p} φ(i),其中floor(n/p) = m。因此,答案为欧拉函数从1到m的求和。

    转载地址:http://iijrz.baihongyu.com/

    你可能感兴趣的文章
    npm node pm2相关问题
    查看>>
    npm run build 失败Compiler server unexpectedly exited with code: null and signal: SIGBUS
    查看>>
    npm run build报Cannot find module错误的解决方法
    查看>>
    npm run build部署到云服务器中的Nginx(图文配置)
    查看>>
    npm run dev 报错PS ‘vite‘ 不是内部或外部命令,也不是可运行的程序或批处理文件。
    查看>>
    npm scripts 使用指南
    查看>>
    npm should be run outside of the node repl, in your normal shell
    查看>>
    npm start运行了什么
    查看>>
    npm WARN deprecated core-js@2.6.12 core-js@<3.3 is no longer maintained and not recommended for usa
    查看>>
    npm 下载依赖慢的解决方案(亲测有效)
    查看>>
    npm 安装依赖过程中报错:Error: Can‘t find Python executable “python“, you can set the PYTHON env variable
    查看>>
    npm.taobao.org 淘宝 npm 镜像证书过期?这样解决!
    查看>>
    npm—小记
    查看>>
    npm介绍以及常用命令
    查看>>
    NPM使用前设置和升级
    查看>>
    npm入门,这篇就够了
    查看>>
    npm切换到淘宝源
    查看>>
    npm切换源淘宝源的两种方法
    查看>>
    npm前端包管理工具简介---npm工作笔记001
    查看>>
    npm包管理深度探索:从基础到进阶全面教程!
    查看>>