博客
关于我
P2568 GCD(欧拉函数)
阅读量:713 次
发布时间:2019-03-21

本文共 528 字,大约阅读时间需要 1 分钟。

为了解决问题,我们需要计算从1到n的所有数对(i, j)中,i和j的最大公约数为p的数目。通过分析和应用数论中的欧拉函数,我们可以得出以下结论:

分析与解答

  • 问题转化:题目要求计算满足gcd(i, j) = p的数对(i, j)的数量。我们可以将问题转化为寻找互质的数对(a, b),其中i = p * a,j = p * b。

  • 限制条件:为了满足gcd(i, j) = p,a和b必须互质,并且1 ≤ a, b ≤ n/p。令m = floor(n/p)。

  • 欧拉函数的应用:欧拉函数φ(m)计算小于等于m的自然数中与m互质的数的个数。由于a和b必须互质,每对(a, b)满足条件的次数为φ(1) + φ(2) + ... + φ(m)。

  • 公式推导:因此,满足gcd(i, j) = p的数对个数为φ(1) + φ(2) + ... + φ(m),即φ(1) + φ(2) + ... + φ(m)。

  • 答案

    ∑从i = 1到floor(n/p),再计算每一项φ(i),即最终的总数为:

    ∑ i = 1 到 floor(n/p) φ(i)

    简化为:

    ∑_{i=1}^{n/p} φ(i),其中floor(n/p) = m。因此,答案为欧拉函数从1到m的求和。

    转载地址:http://iijrz.baihongyu.com/

    你可能感兴趣的文章
    Objective-C实现lorenz transformation 洛伦兹变换算法(附完整源码)
    查看>>
    Objective-C实现Lower-Upper Decomposition上下分解算法(附完整源码)
    查看>>
    Objective-C实现LowerCaseConversion小写转换算法(附完整源码)
    查看>>
    Objective-C实现lowest common ancestor最低共同祖先算法(附完整源码)
    查看>>
    Objective-C实现LRU 缓存算法(附完整源码)
    查看>>
    Objective-C实现LRU缓存(附完整源码)
    查看>>
    Objective-C实现LRU(least recently used)算法(附完整源码)
    查看>>
    Objective-C实现lstm prediction预测算法(附完整源码)
    查看>>
    Objective-C实现lucas数列算法(附完整源码)
    查看>>
    Objective-C实现Luhn (Mod 10)Algorithm算法(附完整源码)
    查看>>
    Objective-C实现LZW编码(附完整源码)
    查看>>
    Objective-C实现MAC桌面暗水印(附完整源码)
    查看>>
    Objective-C实现mandelbrot曼德勃罗特集算法(附完整源码)
    查看>>
    Objective-C实现markov chain马尔可夫链算法(附完整源码)
    查看>>
    Objective-C实现MATLAB中Filter函数功能(附完整源码)
    查看>>
    Objective-C实现matrix chainorder矩阵链顺序算法(附完整源码)
    查看>>
    Objective-C实现matrix exponentiation矩阵求幂算法(附完整源码)
    查看>>
    Objective-C实现MatrixMultiplication矩阵乘法算法 (附完整源码)
    查看>>
    Objective-C实现max non adjacent sum最大非相邻和算法(附完整源码)
    查看>>
    Objective-C实现max subarray sum最大子数组和算法(附完整源码)
    查看>>