博客
关于我
P2568 GCD(欧拉函数)
阅读量:713 次
发布时间:2019-03-21

本文共 528 字,大约阅读时间需要 1 分钟。

为了解决问题,我们需要计算从1到n的所有数对(i, j)中,i和j的最大公约数为p的数目。通过分析和应用数论中的欧拉函数,我们可以得出以下结论:

分析与解答

  • 问题转化:题目要求计算满足gcd(i, j) = p的数对(i, j)的数量。我们可以将问题转化为寻找互质的数对(a, b),其中i = p * a,j = p * b。

  • 限制条件:为了满足gcd(i, j) = p,a和b必须互质,并且1 ≤ a, b ≤ n/p。令m = floor(n/p)。

  • 欧拉函数的应用:欧拉函数φ(m)计算小于等于m的自然数中与m互质的数的个数。由于a和b必须互质,每对(a, b)满足条件的次数为φ(1) + φ(2) + ... + φ(m)。

  • 公式推导:因此,满足gcd(i, j) = p的数对个数为φ(1) + φ(2) + ... + φ(m),即φ(1) + φ(2) + ... + φ(m)。

  • 答案

    ∑从i = 1到floor(n/p),再计算每一项φ(i),即最终的总数为:

    ∑ i = 1 到 floor(n/p) φ(i)

    简化为:

    ∑_{i=1}^{n/p} φ(i),其中floor(n/p) = m。因此,答案为欧拉函数从1到m的求和。

    转载地址:http://iijrz.baihongyu.com/

    你可能感兴趣的文章
    nginx反向代理
    查看>>
    nginx反向代理、文件批量改名及统计ip访问量等精髓总结
    查看>>
    Nginx反向代理与正向代理配置
    查看>>
    Nginx反向代理及负载均衡实现过程部署
    查看>>
    Nginx反向代理是什么意思?如何配置Nginx反向代理?
    查看>>
    nginx反向代理解决跨域问题,使本地调试更方便
    查看>>
    Nginx反向代理配置
    查看>>
    Nginx启动SSL功能,并进行功能优化,你看这个就足够了
    查看>>
    nginx启动脚本
    查看>>
    Nginx在Windows上和Linux上(Docker启动)分别配置基本身份认证示例
    查看>>
    Nginx在Windows下载安装启动与配置前后端请求代理
    查看>>
    Nginx多域名,多证书,多服务配置,实用版
    查看>>
    nginx如何实现图片防盗链
    查看>>
    Nginx学习总结(13)——Nginx 重要知识点回顾
    查看>>
    Nginx学习总结(14)——Nginx配置参数详细说明与整理
    查看>>
    Nginx安装与常见命令
    查看>>
    Nginx安装及配置详解
    查看>>
    Nginx实战经验分享:从小白到专家的成长历程!
    查看>>
    Nginx实现反向代理负载均衡
    查看>>
    nginx实现负载均衡
    查看>>