博客
关于我
P2568 GCD(欧拉函数)
阅读量:713 次
发布时间:2019-03-21

本文共 528 字,大约阅读时间需要 1 分钟。

为了解决问题,我们需要计算从1到n的所有数对(i, j)中,i和j的最大公约数为p的数目。通过分析和应用数论中的欧拉函数,我们可以得出以下结论:

分析与解答

  • 问题转化:题目要求计算满足gcd(i, j) = p的数对(i, j)的数量。我们可以将问题转化为寻找互质的数对(a, b),其中i = p * a,j = p * b。

  • 限制条件:为了满足gcd(i, j) = p,a和b必须互质,并且1 ≤ a, b ≤ n/p。令m = floor(n/p)。

  • 欧拉函数的应用:欧拉函数φ(m)计算小于等于m的自然数中与m互质的数的个数。由于a和b必须互质,每对(a, b)满足条件的次数为φ(1) + φ(2) + ... + φ(m)。

  • 公式推导:因此,满足gcd(i, j) = p的数对个数为φ(1) + φ(2) + ... + φ(m),即φ(1) + φ(2) + ... + φ(m)。

  • 答案

    ∑从i = 1到floor(n/p),再计算每一项φ(i),即最终的总数为:

    ∑ i = 1 到 floor(n/p) φ(i)

    简化为:

    ∑_{i=1}^{n/p} φ(i),其中floor(n/p) = m。因此,答案为欧拉函数从1到m的求和。

    转载地址:http://iijrz.baihongyu.com/

    你可能感兴趣的文章
    nat 网卡间数据包转发_你是不是从来没有了解过光纤网卡,它跟普通网卡有什么区别?...
    查看>>
    NAT-DDNS内网穿透技术,快解析DDNS的优势
    查看>>
    NAT-DDNS内网穿透技术,快解析DDNS的优势
    查看>>
    NAT-DDNS内网穿透技术,解决动态域名解析难题
    查看>>
    natapp搭建外网服务器
    查看>>
    NativePHP:使用PHP构建跨平台桌面应用的新框架
    查看>>
    nativescript(angular2)——ListView组件
    查看>>
    NativeWindow_01
    查看>>
    Native方式运行Fabric(非Docker方式)
    查看>>
    Nature | 电子学“超构器件”, 从零基础到精通,收藏这篇就够了!
    查看>>
    Nature和Science同时报道,新疆出土四千年前遗骸完成DNA测序,证实并非移民而是土著...
    查看>>
    Nat、端口映射、内网穿透有什么区别?
    查看>>
    Nat、端口映射、内网穿透有什么区别?
    查看>>
    nat打洞原理和实现
    查看>>
    NAT技术
    查看>>
    NAT模式/路由模式/全路由模式 (转)
    查看>>
    NAT模式下虚拟机centOs和主机ping不通解决方法
    查看>>
    NAT的两种模式SNAT和DNAT,到底有啥区别?
    查看>>
    NAT的全然分析及其UDP穿透的全然解决方式
    查看>>
    NAT类型与NAT模型详解
    查看>>